If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+26w-56=0
a = 4; b = 26; c = -56;
Δ = b2-4ac
Δ = 262-4·4·(-56)
Δ = 1572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1572}=\sqrt{4*393}=\sqrt{4}*\sqrt{393}=2\sqrt{393}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{393}}{2*4}=\frac{-26-2\sqrt{393}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{393}}{2*4}=\frac{-26+2\sqrt{393}}{8} $
| 7x−8=1 | | 37-26=y | | 36-8=y | | 2x^2+3x-100=0 | | 1/x-3+1/x+5=x+1/x-3 | | 14=u/5-14 | | 3(4-2x)+5=7(5x+2) | | 24x+192x=90x-360 | | 588=20n-12 | | u/2+13=25 | | 45x-360=48-192 | | 45x+360=48-192 | | 〖2x〗^2-5x=0 | | 2(4y-5)+6=76 | | 2(4y-5)+6=76 | | 15000=2x=5x | | 3−8x=21 | | 6x-20+10x+8=180 | | y-350=930 | | y-150=25 | | 7+15/4x=11/4 | | 12b-4=2b-4 | | x-0.20=440 | | 2x-(11x-44+3)=77 | | 4=19-x/3 | | 6z-5=1z-1 | | 6z-5=1z+1 | | 400+x*2=(20+0,6x)*2 | | x+2x+5x+2=100 | | 15x-x=4x,x | | 45b-45=5b-25 | | 18u+-16u+-5u=-9 |